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J .  Phys. A Math. Gen. 24 (1991) 2329-2353. Printed in the UK 

Analysis of the spectrum of a particle on a triangular lattice 
with two magnetic fluxes by algebraic and numerical methods 

J BellissardtP, C &eft'$ and R Seilerf 
t Universiti de Provence, Marseille, France 
%Technixhe Universitit Berlin, MA7-2, Strasse des 17 Juni 136, D-I000 Berlin 12, Federal 
Republic of Germany 

Received 18 July 1990 

Abstract. We consider an electron on a triangular lattice with two magnetic fluxes. Using 
a C*-algebra formalism a perturbation theory around rational fluxes is developed. This 
semiclassical type of analysis leads to the Wilkinson-Rammal formula for the energy 
eigenvalues. The analytic result is verified numerically with high accuracy up to second 
order. Crossing of eigenvalues near band edges is shown analytically as well as numerically. 

1. Introduction 

Magnetic field effects in solids have been of great conceptual, phenomenological and 
even technological importance. The Hall effect, discovered a century ago, led to the 
concept of particles, holes and bands (Hall 1897). The de Haas-van Alphen effect is 
a formidable approach to get information about the Fermi surface (de Haas and van 
Alphen 1930, Onsager 1952). More recently it turned out that the spectrum of the 
Hamiltonian for one particle on a two-dimensional lattice, with constant magnetic 
field perpendicular to the lattice direction, has an amazing wealth of interesting 
structure. In his thesis Hofstadter produced beautiful pictures of the spectrum for the 
case of the square lattice. They were numerically computed. He gave also some rules 
formalizing the self-similarity in this so-called 'Hofstadter butterfly' (Hofstadter 1976). 
These rules have been analysed by several authors, in particular by Helffer and Sjostrand 
(1988b) and Guillement er a /  (1989), who were able to prove a considerable part of 
these numerically motivated conjectures. 

Consider the Hofstadter Hamiltonian 

H=T, tT , tTT+TT.  (1) 

It can be interpreted as the tight binding approximation of a Bloch electron in a given 
band, submitted to a homogeneous magnetic field. In this sense the band structure of 
H and some of its generalizations to be discussed below will have to be interpreted 
as the sub-band structure ofthe original Bloch Hamiltonian. Otherwise it can interpreted 
as the finite difference approximation of a particle in a homogeneous magnetic field. 

4 Permanenet address: Centre de Physique ThCarique, CNRS, Luminy, Care 907, 13288 Marseille-Cedex, 
France. 
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The Hofstadter Hamiltonian H belongs to the algebra of operators generated by 
the unit magnetic translations in one and two directions TI and T,. They will be defined 
explicitly in the following section. Their predominent property is the commutation 
relation 

h 
( 2 )  

4 T,T2=ei'T2T, rp := 2Tr- 
40 

where 4 denotes the magnetic flux through the unit cell of the square lattice. It can 
be argued, that this property alone is enough to compute the spectrum of H. From 
this point of view the analysis of H is an algebraic problem about the so-called 
rotational algebra SP, of operators generated by T, T2 with the commutation relations 
( 2 )  

a?+ = Norm closure of am,nTyTy/{am,n) rapidly decreasing 

The algebra can be analysed easily in the case ' p n = 2 r p / q ,  where p and q are 
integers and relative prime. This case of so-called 'rational flux' leads to a problem of 
matrix valued functions (Bloch's theorem) and to a spectrum of H which can be 
computed numerically with great accuracy--even on a PC at least as long as q is smaller 
than 40. 

Due to the similarity of (2) with the Heisenberg commutation relations for unit 
translations in coordinate and momentum space, the limit 'p to zero is the semiclassical 
limit. This is of course well known and at the root of Landau's treatment of an electron 
in uniform magnetic field (Landau 1930). 

This idea can be developed further: the two commutation relations 

q n , A e R  ~ 1 2 J ~ ( 2 1 -  CA T(llT(1'- a 2 - e  i V @ I ) T ( I I )  I - e  

imply for the direct product operators 

Tk := T','@ Ti2' k = 1 , 2  

the commutation relation 

T , T , = ~ % + A J T  2 1  T 

Hence the 'semiclassical limit', A to zero, permits an analysis of the algebra-and 
therefore of H-in the vicinity of 'p,. 

Figure 1. Magnetic translations and fluxes through elementary cells. 



Particle on a triangular lattice 2331 

The above construction, together with the remark about the case of a rational field, 
suggests the following strategy for the analysis of the spectrum of Hamiltonians which 
are elements of the rotation algebra. Choose 'p = 'po+A, 'po= 2rplq. Then the spectrum 
of the Hamiltonian for 'p close to the rational flux 'p0 is discussed in terms of the 
semiclassical limit A+O. This approach, which is of algebraic character, will be 
illustrated in this paper for a triangular lattice with flux ('p - q )  and q through triangles 
with one vertex down and one vertex up respectively (figure 1). 

in mc iriariguiar case me namiiionian is again an eiemeni of ihe roiaiion aigebra 
generated by TI and T2. It is given by 

(3 )  

1 ~ .  AL. .-: ~ . -  ~ ~~~~ _.~- 7 . -  ~~.* . -  

H = T, + T2+ T3 + TT + Tf + TT 

with T, defined by 

( 2 9  
- - -  .~ 1,1, l ,=e '" .  

The semiclassical approach leads to a Hamiltonian reminiscent of the Born- 
Oppenheimer problem (20) 

+ AJ,H(O, k )  +O(/A13'2). 

X( k )  is a matrix-valued function on the torus and K , ,  K 2  are canonical operators. 
They satisfy Heisenberg commutation relations. In a generic case (no band touching) 
an extremal eigenvalue E of Be( k )  with eigenprojector P generates an effective potential 
c o l & ,  duo L E I S  J y D L z - l l l  LS "GDL.II"G" uy L U G  quallrurll LIUCLUd_cIU,IJ LllUUllU E a,,,\ ̂--I r L ^  :- .x-"..-:Lm.x L.. r L ^  -..-........ a__-. ..-. :--" 

A lAI. 

+ A  Trace P(J,H(0))+O(lA13") (E  extremal of 8). ( 2 5 )  

H(A, k)-E+-(J ,a ,g)K,K,- - iTrace(P((a~)~(JP)) )  
2 2 

The spectrum oi  this etfective Hamiitonian is given b y  the Wiikinson-Rammai formuia 
(26) (Wilkinson 1984, Wang et a1 1987, Bellissard 1988) 

A .  
E,(A)=E*IAIJdet(a,J,g) ( n + t ) - T i  Trace(P((a2tA (aP))) 

+ A  Trace P(a,H(0))+O(!A[3'2). 

It describes the spectrum of the original system near band edges. 
The first term proportional to [AI is related to the curvature of the effective potential 

% at  its extremal point. The second term originates from the non-commutativity of the 
canonical operators K ,  and K , .  It is related to the occurrence of a Berry phase 
(Wilkinson 1984, Berry 1988). The third term is a result of the explicit A dependence 
of the matrix %(k, A). Note that the overall slope of an asymptotic line is given by 
the sum of all three terms, while the change of slope between the different asymptotics 
JEJJA (n = 1,2,3,  . . .) belonging to the same extremal is entirely given by the curvature 
of 8 ( k )  at this extremal, which in terms of Bloch theory is called the effective mass 
tensor of the Bloch electron. 
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We should like to stress that the spectral curves &(A)  exhibit several crossings 
since they approach several distinct band edges (29) (see figures 4-6 below), 

In the generic case-described by  the Wilkinson-Rammal formula (26)-the spec- 
tral curves approach the minima linearly in A. This changes in the case of band 
touching. The corresponding formula will contain a square root of A. We have not 
analysed this situation in detail (Helffer and Sjostrand 1988a. Rammal and Bellissard 
1990a). 

In the present work we have especially investigated the accuracy of the semiclassical 
expansion in describing the spectrum. We shall illustrate this for the triangular lattice 
with two fluxes, where band crossing occurs. We have compared the theoretical work 
with the numerical calculation of the eigenvalues, and we shall see that the agreement 
is quite good. 

We will not consider broadening of Landau levels due to tunnelling. This 
phenomenon has been analysed by Wilkinson and Austin (1990) for the model with 
threefold symmetry. They computed a tunnelling Hamiltonian describing the interaction 
between bottom wells in different unit cells. Furthermore they show numerically that 
it is sufficient to consider only neighbouring unit cells. This allows us to write the 
effective tunnelling Hamiltonian as a renormalized version of the original Hamilton 
operator. 

Similar methods as the ones used here have been applied recently in the study of 
the stability of spectra for an electron submitted to a homogeneous or periodic magnetic 
field (Rammal and Bellissard 1990b, Barelli et a/  1990). 

The paper is organized as follows. In section 2 we describe the model in the algebraic 
language. Section 3 is devoted to the calculation of the semiclassical expansion for 
the band edges near a rational number. In section 4 we describe and discuss the 
numerical calculations. 

2. Definition of the model 

In this section we shall first describe in more detail the model considered. Next the 
semiclassical calculation of energy eigenvalues will be described. Finally the numerical 
results will be compared with the analytic computation. 

2.1. Realizations of the rotation algebra 

For the spectral analysis of the Hamiltonians to be considered, it is useful to introduce 
three different realizations of the rotation algebra. Since the spectrum of elements in 
the algebra are defined in terms of the trace only and since this trace is unique it does 
not matter which realization is used. 

The elementary constituents of all Hamiltonians considered are the magnetic 
translations T ,  and T2 defined below. They obey the commutation relations (2) and 
hence provide the first realization of the rotation algebra d,. 

The operators TI, T2 act on l ' (Z*),  the space of square integrable functions defined 
on the lattice Z', and are given by the equations in a Landau gauge: 
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In this representation the Hamiltonians (1) is easily interpreted as the finite difference 
approximation of the one-particle Hamiltonian for an electron moving in the plane 
submitted to an external and constant magnetic field. The same realization leads to 
an interpretation of the Hamiltonians (1) and (3) as the tight binding approximation 
of an electron on a square lattice and a triangular lattice in an external magnetic field 
respectively. 

We shall refer to (1) and (3) together with the commutation relations (2), (2') as 
the square lattice Hamiltonian with flux 9 and the triangular Hamiltonian with fluxes 
'p. 7 respectively. They belong to the rotation algebra d-. In fact the triangular 
Hamiltonian is a family of elements in de parametrized by the flux 7. Two members 
of this family are of special importance: The first one has the parameter value 7 = 912 
and is the ordinary triangular lattice as discussed by Claro and Wannier (1979); the 
second one is characterized by 1) = 0 and related to the hexagonal lattice (Rammal 
1985) (see also section 2.2). 

To support physical intuition it is useful to associate with the magnetic translations 
the diagrammatic representations shown in figure 1. 

The second realization of the rotation algebra is given in terms of the usual 
Schrodinger representation of the Heisenberg commutation relation. Let K ,  and K ,  
be momentum and position operators on the space of square integrable functions 
L2(R,  dx); then 

T, = e'&% j = l , 2 ,  pa0 (4) 
satisfy the commutation relation (2) due to 

[ K Z , K J = i .  ( 5 )  

J j = 1 , 2  (4') 

[K,,  K,] = i. ( 5 ' )  

If 'p s 0 we choose alternatively 
T, = eiv%K, 

and exchange the role of K ,  and K, : 

To see the use of this representation of sl, note that a formal second order expansion 
in 6 of the square lattice Hamiltonian (1) simply gives a harmonic oscillator: 

H ( ' p ) = 4 - I p p l ( K : + K : ) + . .  . . 
Hence this representation is useful for the analysis of the spectrum near 9 =O; more 
generally one has to expand around an extrema1 point in the 'classical phase space' 
as will be shown later. 

In the case of rational flux, 'p = 2 ~ ~ 1 9 ,  where p and 9 are integers with no common 
divisor, the elements of the rotation algebra de can be realized as covariant matrix 
valued functions on the torus T2. This is the third realization of Sa, which will be 
used. In particular the triangular Hamiltonian H ( q  =2rrp/q, 7) is realized by the 
following matrix valued function on the torus 

X(q, 7 ;  k) = e'*l w, + e'$w,+ e iv  e - i (k~-ck~J  w: w r  + . . . + cc. ( 6 )  
Here 

I = O ,  . . . , q -  1 ( 7 )  1 
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are 2 independent q x q matrices. They satisfy the commutation relation (2). This comes 
about because 'I; and T2 are the following matrix valued functions: 

TI = e"'w, r = 1 , 2  (8) 
It is going to be useful to think of %' as a classical Hamilton function, which is, 
however, matrix valued. 

The representation of the Hamiltonian for rational flux in terms of matrix valued 
Lunciiow 011 inc iurus 1s iuc mgcurm~ V C I S I U I I  01 D I U ~ I I  s ~ C O I C I I I .  I I  13 appii~aotr IICIL: 

because in the case of a rational flux the magnetic field does not entirely destroy 
translational symmetry. In fact the three operators H ( q ,  9), TP and T, commute and 
can therefore be diagonalized simultaneously. 

r .._.I :.-. _ _  .L. ..-.. :. .L^ -,--L--; :-- -.-r,.--L.. .L ..:. ̂__,..L,. LA-. 

2.2. The spectrum for rationalj7ux 

The spectrum of the Hamiltonian H(p = 2 a ( p / q ) ,  q) is given by the equation 

It has been discovered by Chambers (1965) that the secular determinant for the square 

z not depending on S the second one a trigonometric function not depending on z. 
At the root of this phenomenon lies the fact that the Hamiltonian is built up by 
nearest-neighbour terms. This holds also for the triangular Hamiltonian. So it is 
understandable but still remarkable that the secular determinant of the triangular 
Hamiltonian has the same structure: 

a..**:-- n;--le -+-.-...-n T+ :- eh- -..- nf + . . e n  +a--- +ha G r r t  n-n I --I .._- -:-I :r ,ll,,,cc ,,an a >,,,,p,c JL1UCI"IC. I I  1.7 L l l C  D u l l ,  "1 L W "  LCLII.a, L U G  L l l D L  "lib 'I pU'J""""'I1 11. 

= P ( z ) - h ( k )  

U H q = Z a - , q  ={z(P(z)EImageh). (11) i i  E ) )  
This equation can be interpreted graphically with the help of figure 2. 

The image of h is the interval with the boundary points {hmjn, hmax} ,  Hence the 

map P. The numerical implication of this fact leads to figures 4-8 below. They show 
the band structure of the spectrum very clearly The number of bands is equal to q up 
to a few exceptions, where one observes 'band touching'. For the square lattice see 
for details Bellissard and Simon (1982), van Mouche (1987) and Choi er a1 (1990). 
Setting the secular determinant of H ( q ,  q )  equal to zero 

---"+ _..- -C "I.. -) :- tho :-.,o-ca :--ne nf thn i n t p m r ~ l  r h  h 1 hs, thp nnl.mnm;.l 
Jp'FCL1ULll U1 " , Y ,  ,,, I D  ,,,U .l.*s,.La\. .B. 1PS,C "1 L.1.. I . .L I .  I". L , , m , n r  ."ax, Y ,  L1.U Y".J..U .... U. 

defines the band functions 

z = g n ( k )  n = l  . . . q  k E T2. 
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E 

Figure 2. The spectrum of H according to (11) 

The band edges are characterized by critical points k, of h(p, 7 ;  k ) ;  

From Chamber's relation (IO) it follows that for the nth band 

provided there is no band touching, 

aP 
- (2 = & ( k c ) )  # 0. 
a2 

2.3. Spectrum of the honeycomb lattice 

The spectrum of the honeycomb or hexagonal lattice is easily related to the triangular 
lattice with flux zero through one type of triangle. 

Consider a triangular lattice r. Then the hexagonal lattice rH can be seen as a 
subset of r, rH is not a Bravais lattice and it decomposesrinto two types of lattice 
points belonging to triangular lattices T A ,  Ts c r with r = T A  U Ts. Where these 
sublattices have twice the lattice spacing of the underlaying lattice r. 

Correspondingly the space of physical states on the hexagonal lattice decomposes 
into the direct sum 

P(r) = i2(rA)@l2(rB). 
The hexagonal Hamiltonian H6 can now be written as a 2 x 2  matrix with operator 

entries. Due to the geometrical structure of the lattice it is off-diagonal, 
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with 

H A , =  T l + T 2 + T 3  and H,, = TT+ Tf i TT 

where the magnetic translations are defined on the underlying triangular lattice such that 

T T T - i+/6, T, T2 = T2T, and I , - e  

Then c$ is the Hux through a unit hexagon in rH. The square of H6 is diagonal and 
of the form 

where 

HA, = 3 i  TI T f  + T 2 T f +  T,Tf + C C  

=3+TIA'+TIA'+T(A'+cc.  3 

The translations TiA' act on the triangular lattice T A  only and fulfil the commutation 
relations of a triangular lattice with flux c$ through an up-triangle and Hux 0 through 
a down-triangle. Hence the spectrum of the hexagonal and triangular lattice for rational 
flux are related by the formula 

3. Semiclassical analysis near band edges 

Bef~;e gokg i;:n &:ai!: abo-t :he spectrcz in !he vicinity ef bsnd edges, we &a!! 
introduce Weyl operators replacing magnetic translations: 

w ( m )  := T;'T;"? e(i/2)W'"m2 m E z2. (13) 

They satisfy the multiplication law 

w ( m )  W(n~=e"/2'"'"'-"*"i'W(m+ n) m , n E Z 2  

due to (2). Clearly every element of the rotation algebra d9 can again be written in 
terms of the Weyl operators (131, 

.d;- =closure 7 b ( m )  W ( m )  ( b ( m ) )  sequenceof rapiddecrease). 
J 

I 
I 

I 
Im;2 

In particular the triangular Hamiltonian is of the form 
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The coefficients h are summarized in table 1. It is convenient to introduce the following 
notation: 

J , H ( ~ ~ n ) = X h ( c o , v ;  m)(-im2)W(m) 

M~((P,  n)=X WP, 7 ;  m)(imJ w ( m )  

J,H(P,~))=X-((P,?;  m ) w ( m ) .  

(14) 

J h  
J P  

Table 1. Coefficients of the triangular Hamiltonian. 

0 -1 1 
0 1 1 

- 1  0 1 
1 0 1 

- I  I erp(i7 -ip/2) 
1 -1 exp(-iq + iq/2) 

It is motivated as follows: in the case of rational flux we have already seen that the 
magnetic translations and hence the Weyl oeprators are matrix valued functions of 
k E U* (algebraic Bloch theorem). It is easily verified that in this case we get the identities 

JJ~(P ,  q ;  k)=- H(P, 1); k) l = l , 2 .  (15) 

Hence definitions (14) are arranged in such a way as to extend the derivatives with 
respect to k, which is well defined for the rational case, to the case of arbitrary flux. 

Now we shall investigate the spectrum of the triangular Hamiltonian at the band 
edges by combining two realizations of the rotation algebra as follows: the realization 
by matrix valued functions (rational flux) (71, (81, and by the usual one-particle 
quantum mechanics (4), (3, where a semiclassical expansion is easy. 

Consider the triangular Hamiltonian for flux ‘p = 2 r ( p / q ) + A ,  with p, q relatively 
prime. Then H(A) has the structure 

J 

J k, 

H(A) =I h(A, m) W“’(m)O W‘”(A, m). (16) 

W“’(m) is a matrix valued function of k E U’. Hence H ( A )  can be viewed as a q x q 
matrix with operator valued entries. 

As an introductory example let us consider the case q = 1. Then the magnetic 
translations get the simple form 

t= T:”OT:2’=exp(idZK,+ik,) j = l , 2 .  

A formal expansion in 
(3)  in this representation gives 

H(k,, A) = cos(k , , )+cos(k , l )+cos(k , ,  + k,,-q)+lAl{sin(k,,)K:+sin(k,,)K: 

around a critical point k = k,  of the triangular Hamiltonian 

+sin(k,,+ kez- q ) ( K ,  + K 2 ) 2 + A  sin(k,,+ kc2- q ) + O ( ~ A ~ ” * ) ] .  
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Diagonalizing this quadratic form shows that, like in the square lattice case, we 

To get semiclassical results about the spectrum in the vicinity of the rational flux 
have a harmonic oscillator. We will come back to this example in section 4. 

2~rpplq we expand H(A) and 
- - 

(17) 
~ l 2 1 ( ~ ,  A)  = e i J A m l K L  e - i JAm,K2  eli/21Am,m2 

in po;vc:s of a. Defixixg m A K = X2Kl - m,K, :his !ea& :o 

W(A, m)= W(0, m) l + i m ( m n  K ) - - ( m  1A1 A K ) ~ + O ( / A ~ ~ ~ ~ ) )  2 

H(A) = H ( 0 )  +m (d,H(O))K, +y 1A1 (J,Qf(O))K,K, + A(J,H(O)) + O(lA13/2). 

It is important to note the structure of each term in the above formulae: 

H ( O ) =  H(0)“’O1‘Z’ 

Formula (18) can be rewritten in terms of the matrix valued function &I( k ) ,  the ‘classical 
Hamiltonian’ for ratinnal Rntx (PCP \ _ _ _  eqcations (14) and (15)): 

H ( A , k , ) = X ( k , ) + f l  

+A(JAH(O, ku))  +O(lAl’’2). (20) 

The expansion can be viewed a5 the quantization of the harmonic approximation of 
the classical Hamiltonian in a vicinity of k, 

At this point we continue our investigation of the spectrum close to a band edge 
$(kc )  by a kind of phase space localization in the spirit of the Born-Oppenheimer 
approximation. The band function %( k )  is viewed as a ’potential surface’. The spectrum 
of H(A) close to the band edge is expected to be dominated by the classical Hamiltonian 
at the corresponding critical points k,= k,. If q = 1, the classical Hamiltonian is a real 
valued function on the torus. For 7 = 0.3 ~r we have produced a plot of the function 
(figure 3) that shows well that the levels of constant energy near the extremals are 
almost elliptical. Also we see the existence of the two distinct extremals leading to the 
level crossing. 

The ‘quantum fluctuations’ are quadratic in K, and K 2  up to corrections of order 
lAI’/‘, The spectrum will now be computed by perturbation theory in the parameter 
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and this is more or less a problem about the harmonic oscillator. Notice that the 
individual terms in (20) have structures analogous to the ones explained in formulae 
(19). 

To start perturbation theory consider the .eigenvalue 8( k,) of the unperturbed 
Hamiltonian %(kc)  (20). It belongs to a band edge for rational flux 2?rp/q and is 
infinitely degenerate: this comes about because the corresponding eigenprojector has 
the structure. 

(22) P (  k,) = PCi!( k,) 0 1. 

For what follows we shall make the assumption: 

dim P'"( k,) = 1. 

_ .  
lhis means that there is no band touching at k,. To simpiify notation we shaii adopt 
the following notational convention. If a function f ( k )  of k ER* is evaluated at k = k, 
we drop the variable k, and write simply f: 

The standard formulae of perturbation theory (Messiah 1969, Kat0 1966, Hunziker 
1988) reduce the computation of the eigenvalues of H ( A )  to the analysis of an effective 
Hamiltonian Xe,LA). This operator lives on the range of P only, i.e. it vanishes on the 
orthogonal complement of range P: 

H , , ( A ) = P X + a  P ( d , X ) P K , + 1 P ( a , J " X ) P X , K ,  IAI 

+ ( A l p  (d,%)S??(d,%)PK,K, + A P ( d A H )  + O((A(3'2) 

W denotes the reduced resolvent a t  energy E :  

3 := ( X -  E ) - ' P l  P' := 1 - P. 

To start perturbation theory let us apply the above formalism to the 'classical 
Hamiltonian', the matrix valued function (21) at  ko= k,. It will lead to a result which 
11 U b C l U l  1v1 LllC q"'a,,,""L C'lJC. 111s Z L L C C L l l L  G h Y I I L I ' . ,  L I I I I I I I I I V I I I Y . .  , d... r.. .., '". . .t ,YL'Y 

along the same lines as H,,(A), is given by the formula 

XcFLk) = P%+ P(a ,X)Pk ,  + $P(a,J,Z)P k,k, + P(a,X).% (J,%)P k,k, + O( k 3 ) .  

To simplify natation we dropped in all terms on the right-hand side of the above 
formula and of (21) the superscript ( I ) ,  which refers to the matrix representation 
defined through (8). To be precise we should have written for instance P"'X'" since 
X ( k )  and %&(k) are both matrix valued functions. 

Due to stability of the spectrum under small perturbations and the hypothesis 
excluding band touching (23) the eigenvalue of X ( k )  is given by the formula 

: C..? C-- .L*  A.... - - - ~  ~ ~ ~ ~ ~ ~ ~ * i . . ~ ' ~ , " ~ ~ i " " ,  U n l r i l + n - i q n 3  ,.h;ch;e c_ --,, tnA 

8(k)=Trace Xefr(k)P 

This formula can easily be evaluated. One gets the result 

S ( k ) =  E+f(d ,J ,P)kpk ,+O(k ' )  

(J,J,P) =Trace P (J,a,n+ (d,,%)%(JvX) + ( a , x ) R ( J , % ) ) P  
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since 

Trace P(J,,X)P=J,g=O. 

This equation holds due to the so-called Helman-Feynman theorem and (12). 
Now we return to the corresponding calculation for the quantum operator H(A), 

respectively its effective counterpart H,,(A). Due to the hypothesis which excludes 
band touching (23) the eigenvalues of H.,(A) and of Trace (&(A)) are the same. 
Notice that ‘Trace’ means the partial trace with respect to the matrix part of the tensor 
product and should rather be denoted by Trace‘’’. To simplify notation we drop the 
index. 

Trace Hcm(A) contains terms which are almost the same as the terms in X J k ) :  

Trace &(A) = E + d T r a c e  P(J,,X)PK,+-Trace 1A1 P(J,J,%)PK,K, 2 

+ A  Trace PJ,H(O)P+IAI Trace P(J,%)B(J,X)PK,K. 

+ O(lA13/2). 

To make the close analogy of the formula above and of (24) more transparent we split 
the term quadratic in K into its symmetric and antisymmetric part. The first one 
corresponds to the classical counterpart and the second gives a quantum correction 
due to the non-commutativity of K, and K,: 

Trace H,,(A)= E+-(J,J,g)K,K,--B+ATrace P(J,H(O))+O(lAl”’). 

Here B denotes the expression 

( 2 5 )  
1A1 A 
2 2 

B=iTrace(P(J,X)B(J,%)P-P(J,%)Sl(J,%)P) 

=iTrace(P((JX)n (JP))). 

This is a term reminiscent of Berry’s phase. Now the spectrum of H(A) can be read 
off easily. It is given by the Wilkinson-Rammal formula 

E.(A) = E *IAIJdet(J,,J,8) ( n + f ) - -  B + A  Trace P(J,H(O))+O(lAl”’) 
A 
2 n E N .  

(26) 

The sign in front of the second term reflects the maxima and minima in the phase 
space localization. 

4. Numerical computation 

In the remainder of this paper we use the above formula to interpret the numerical 
data presented in tables 2 and 3 and figures 4-8. In order to do that we compute the 
right-hand side term by term for the two cases q = 1 and q = 2. 
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Table 2. Semiclassical against numerically computed coefficients far 7 = 2 n  ~0.0175; 
( a ) ,  ( h )  expansion nearp/q= 1 with A >  0; compare with figure 5; (c), ( d )  expansion near 
p / q =  112 with A > &  compare with figure 6. 

( 0 )  

m n EO,, EO,,,, E I S ,  E L ,  E%., E2sc 

1 0 -1.594195 7 -1.59420 0.8837656 0.88399 -0.24772 -0.241 58 I 
1 I i - i . j94i957 -1.59420 1.8041750 1.80514 - 1 . U U L J Y  - U . Y l b X Y  
1 1 2 -1.5941957 -1.59420 2.7245843 2.72753 -2.278 14 -2.20298 
1 I 3 -1.5941957 -1.59420 3.6449936 3.65227 -4.09984 -3.91983 
1 I 4 -1.594195 7 -1.59420 4.5654030 4.581 07 -6.503 66 -6.12746 
1 I 5 -1.5941957 -1.59420 5.4858123 5.51657 -9.54287 -8.82585 
1 I 6 -1.5941957 -1.59420 6.4062217 6.46395 -13.3123 -12.0150 
I 1 7 -1.5941957 -1.59420 7.3266310 7.42723 -17.8989 -15.6949 

. ̂^^ -- " - - ~  ^^ 

( b )  

1 -1 0 -1.4037894 -1.403 79 -0.0366437 -0.036628 -0.004573 -0.004 16 
1 - I  I -1.4037894 -1.40379 0.7738345 0.774302 -0.273 882 -0.261 20 
1 -1 2 -1.4037894 -1.40370 1.5843127 1.58651 -1.08732 -1.03038 
1 -1 3 -1.4037894 -1.40379 2.3947909 2.40164 -2.48498 -2.31173 
1 - I  4 -1.403 789 4 -1.403 79 3.205 269 1 3.221 91 -4.519 93 -4.105 23 
I -1 5 -1.403 789 4 -1.403 79 4.015 7474 4.052 86 -7.361 81 -6.410 89 

(C) 

2 -1  0 -1.5307270 -1.53673 0.5769625 0.57755 -0.55417 
2 - I  1 -1.5307270 -1.53973 1,2129721 1.21612 -2.24411 
2 - I  2 -1.5307270 -1.53073 1.8489816 1.85959 -5.22401 
2 -1 3 -1.5301270 - 1 3 3 0 i 3  2.48499ii 2.5ii43 -Y.bYUYU 

2 -1 4 -1.5307270 -1.53074 3.1210007 3.18014 -16.0439 
2 -1 5 -1.5307270 -1.53074 3.7570103 3.88271 -25.0245 
2 -1  6 -1.5307270 -1.53074 4.3930198 4.667 26 -38.537 5 

- ,^^^^ 

( 4  

2 0 0 -:.267?5P,? -1.45725 -0.05?!863 -0.06?!0!9 -0.0340501 
2 0 1 -1.4672582 -1,46726 0.4505899 0.452678 -0.831 757 
2 0 2 -1.4672582 -1.46726 0.964366 1 0.976372 -3.32528 
2 0 3 -1.4672582 -1.46726 1.4781424 1.47182 -6.6383 

The first step in this direction is the computation of the local extrema and the 
second derivative for the energy band function 8 ( k ) .  From the Chambers relation (10) 
one gets the formula 

(27) 

Hence it is enough to compute the extrema1 points for the trigonometric function 
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Table 3. Semiclassical against numerically computed coefficients for q = r / 2  expansion 
nearp/q=1/2with(o)A>O,(b)AcO;comparewithf igure8 .  

( a )  

2 1 0 -0.866025 -0.865 953 -1.0 -0.991 37 0,815426 
2 0 0 -0866025 -0.865917 -1.5 -1.496 10 2.228 40 
2 i i -"." "1, -0.865 88i -iD -1.YYO2b 4.328 94 
2 0 1 -0.866 025 -0.865 945 -2.5 -2.481 94 7.11905 
2 I 2 -0.866025 -0.865 912 -3.0 -2.975 10 10.668 8 
2 0 2 -0.866025 -0.865 912 -3.5 -3.476 28 15.161 8 

^^,,^^_ 

( b )  

2 ! 0 -0.866 025 -0.866 942 -9.5 -0.499 579 -0.!63 ! 5 !  
2 0 0 -0.866 025 -0.866 025 0.0 0.001 502 57 -0.354 297 
2 l 1 -0.866 025 -0.866 009 0.5 0.503 026 -1.41656 
2 0 1 -0.866025 -0.865 993 1.0 1.00461 -3.305 84 
2 1 2 -0.866 025 -0.865 978 1.5 1.507 83 -6.040 11 
2 0 2 -0.866 025 -0.865 960 2.0 3.017 60 -9.739 06 

at least in the case of no band touching (P'( k )  # 0). A straightforward computation 
leads to the following result for the extremal points of h (up to Z T / ~  periodicity in 
both variables): 

q k , = f ( q ?  + .n(q-  1 ) + 2 ~ m q ,  q ? + ~ ( q -  1)+2?rmq) 
The periodicity allows for a reduction to the cases m E [-1, 0, l ) ,  

m e Z .  

TL^ ---------A:-^ -I . . - a  -.- - 2  c... 
1 LIC L-UKICbpUILUlIlg CXLICl l la l  V a l U G >  a k C  g 1 V C I I  V y .  

h(  k,) = 6 cos( e,) e, = q / 3 ( ? + 2 ~ m ) .  
This triangular symmetry in phase space reflects the triangular structure underlaying 
the Hamiltonian (Wilkinson and Austin 1990). 

For the second derivative (the Hessian) we find at the extremal points 

h"(k,) = -2q2  cos(0,) [: ;I. 
Notice that both eigenvalues of h" have the same sign as they should since the Hessian 
is the harmonic approximation at a local extremum. 

The second term in the Wilkinson-Rammal formula can now be computed. Differen- 
tiating equations (10) and (27)  once again and setting k = k,  one gets 

Together with (28) this leads to 

8"( k,) = - 

The harmonic oscillator frequency is given by the square root of the second derivative 
of %:(kc) evaluated either at a maximum (+sign) or a minimum (-sign) 
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As mentioned above we restrict our investigation of the Wilkinson-Rammal formula 

Using formulae (6) and (7) it is easily seen that the classical Hamiltonians are 
to the cases q = 1 and q = 2. Here the polynomial P ( z )  is computed explicitly. 

 COS k,+cos(k,+k,-v)+cos k,] q = l  

q = 2  { 2 [ u ,  cos k,+ u2 sin(k, + k2- q)+ U, cos k,] 
X( k) = 

where U, ( i  = 1 , 2 , 3 )  refer to the Pauli matrices. 
Hence one gets for the polynomials 

Z q = 1  
P( 2 )  = {z2-6 q = 2 .  

The classical energy can now be expressed in terms of h only: 

q = l  
q = 2  

8 ( k )  = 

where the i refers to the two sub-hands present in the case q = 2. Evaluated at extrema1 
points it gives the first term in the Wilkinson-Rammal formula. 

Inserting the expression for P'(g(k,)) into formula (28') one gets 

- 2 4 3  cos e, q = 1  

The third term B is only present if q = 2. For q = 1 it vanishes, because the projector 
P is one (there is no reduced resolvent). After a straightforward computation using 
Pauli matrices one finds 

1 sin?+sin(B,-q) 
2 l+COS(6,) 

E=- 

To compute the last term we differentiate formula (16) with respect to A, using 
(17) we find 

The relevant trace can be computed easily: 

sin(0,) q = l  

q = 2  Trace PdAH(O, k,) = 

6+6cosO, 

where P denotes 

q = l  

and projects on the eigenspace characterized by 8(kJ  
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Summarizing all the results about the Wilkinson-Rammal formula for the cases 
q = 1 and q = 2, we get the formulae: 

q = 1 :  

E(A) = 6  cos (0 , ) -2  cos(O,)& (n+f)A+~in(0,)A+O(IA1~) 

q = 2 :  

2JJcos(@,) 
E(A) = * 2 m T A  ~ J6i-6 cos(0,) ( n + t )  

sin(@,) (sin q-sin(@,-q)) 
- A  +O(lAl’). * A  J6+6 cos( 0,) 1 +cos(e,) 

where 

27rm + q 

27r(m+ 1/2)+2q 
3 

q = l  

q = 2  
m E { - l , O ,  I}, 

The above formula allows us to compute the zeroth- and first-order coefficients in the 
semiclassical expansion of the spectral energy E(A) = EO+AEI +O(lAl”2) around a 
minimum EO for q = 1 and q = 2. Please notice that in the expansion of the energy in 
powers of A there is no fractional powers, unless if there is band touching. So the 
remainder is of order A2. If necessary we distinguish the three minima by its index m 
according to (29). 

For the case q = 1 Rammal and Bellissard (1990, section 3.5b) have computed the 
second-order correction E2 to the energy. A slight modification of their result, taking 
into account the shift of q / 2  due to the direct ‘p dependence of the triangular 
Hamiltonian, gives 

1 1 sin2(8,) 3 ( 2 r 1 + 1 ) ~ + 5  
4 

E 2  =- cos(@,)(l+ ( 1  +2n)2) +- ~ 

8 18 cos(@,) 

1 JJ. --cos(8,)--ssln(@,)(2n + 1). 
12 6 

4.1. Numerical results 

On the basis of equation (11) the spectrum for rational flux + = 2 ~ ( p / q )  could be 
computed numerically. For some values of the parameter q we present the data in 
figures 4-8. The horizontal axis shows the energy scaled by 1/2 and the vertical axis 
shows the flux + through a unit parallelogram scaled by 2 ~ .  Note that 7 represents 
a fixed flux through the up-triangle. Every picture displays the energy hands for various 
rational fluxes up to a maximal denominator of q = 40. Around the q = 1 and q = 2 
hands we have taken values of q up to 110 to emphasize the asymptotic behaviour. 
For a small value of q = 27r 0.0175 (figure 4) we observe a crossing of levels near the 
lowest eigenvalue. Figures 5 and 6 give an enlargement of this effect near q = 1 and 
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q = 2, respectively. The pictures show already quite well that the spectral curves (as a 
function of flux) approach the band edges in general linearly. Exceptions are seen, 
where bands come close for instance in the centre of figure 4. 

For q = 7~12 the spectrum shows a symmetry under a reflection E + E and q5 + -4 
(figure 71, which can be proven analytically. As a result we find a degeneracy for the 
two minimal energies EO with index m = 0 and m = 1 as shown in figure 8. 

The numerical work was done on a simple personal computer using the 80-bit 
floating point format of the coprocessor. To solve the secular equation (10) we used 
the fact that in the triangular case for some values of k the secular problem gets into 
the form of a real-tridiagonal-matrix problem. It was solved by a modified Newton- 
Maehly algorithm (Stoer and Bulirsch 1980). 

From the data of figures 5 and 6 we have extracted the spectral points belonging 
to ‘semiclassical’ asymptotics near the minima E, of the energy. We have chosen some 
cases which show level crossing. That is, for q = 1 the minima with index m = 1, m = -1 
and for q = 2 the one with m = 0, m = -1. Through a least-squares fit with a parabola 
we have adopted coefficients E,,,= E0..,+AEl..,+A2E2.,,. In table 2 they are 
compared with the results of the semiclassical approximation (denoted by the index 
‘sc’) and show a very good agreement up to four digits. For q = 0 both minima are 
degenerate and the corresponding asymptotics coincide. For q small, # O  the minimal 
values become different as well as there harmonic approximations. According to the 
Wilkinson-Rammal formula (26) the terms up to second order enter into the slope of 
the asymptotic line. This is the origin of the observed level crossing. For the q = 1 
cases we have computed the second-order term E,, according to formula (30). The 
results are shown in tables 2(a) and 2 ( b )  and should be compared with the measured 
values E2..,. The agreement is not as good as for the first-order terms, since we fitted 
with a parabola only. 

A similar table is taken from the data of figure 8 around the degenerate minima 
for m = 0 and m = 1, both for positive and negative A. In table 3 the numerical results 
are compared with the semiclassical formula. Note that the first-order coefficients take 
integer values (the tables show half-integers due to the scale in the energy axis). For 
q = ?r/2 again we find degeneracy for the extrema1 energy. While in the case of q = 0 
also the slopes of E(A) show this degeneracy, now the asymptotics coming from the 
two coinciding extremals are distinct. As a result the level crossing for q = 7r12 occurs 
for very small A only. With the accuracy of our calculation it cannot be displayed. 
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Appendix. Symmetries of the triangular lattice spectra 

Let o(p, 7 )  denote the spectrum of the triangular lattice Hamiltonian (3) as defined 
above. Using algebraic homomorphisms we prove the following symmetries of the 
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spectra: 

(i) 4 ~ .  'I) = ( - l )ndv ,  q + n )  n e E  

(ii) U(% 'I = T / 2 )  = -u(v,'I = T r / 2 ) .  

p :  dv-dv 

p( TI) := -TI and p(r2):=-T2 

To prove (i) consider the map 

A-'?..-> .L L 
UClllLCU rrllvuglr 

and the extension as a linear *-homomorphism (i.e. p ( A B ) = p ( A ) p ( B ) ,  /3(B*) = 
( p ( B ) ) * ,  A, B E & , ) .  The map is well defined since it preserves the commutation 
relation (2). It is invertible and therefore an automorphism of the algebra. Hence for 
?he !rizngu!ar !at!ice Knmiltonian (5 )  we have the syr.me!ry 

P(H('I  + = - H ( ' I ) .  
That is z belongs to the spectrum of H (  7 + T) if and oniy iff-z belongs to the spectrum 
of H ( 7 ) .  To prove (ii) we consider a second *-homomorphism 

P ' : d *  U d-, 

p'( T,) := - T;  and p(  TJ:= -TT. 

P ' ( H ( v ,  7 = T / 2 ) )  = -H(-vp, 'I = Tr i2 ) .  

with 

Now we get 

So z is a spectrai poini of i i ip, 7 = Tii) i i  and oniy if -2 belongs IO the spectrum 
of H ( - p ,  'I = T/2). 
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